
Miura type transformations and homogeneous spaces

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2005 J. Phys. A: Math. Gen. 38 4433

(http://iopscience.iop.org/0305-4470/38/20/010)

Download details:

IP Address: 171.66.16.66

The article was downloaded on 02/06/2010 at 20:14

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/38/20
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 38 (2005) 4433–4446 doi:10.1088/0305-4470/38/20/010

Miura type transformations and homogeneous spaces

Sergey A Igonin

Department of Mathematics, Utrecht University, PO Box 80010, 3508 TA Utrecht,
The Netherlands

E-mail: igonin@mccme.ru

Received 15 December 2004, in final form 16 March 2005
Published 3 May 2005
Online at stacks.iop.org/JPhysA/38/4433

Abstract
We relate Miura type transformations (MTs) over an evolution system to its
zero-curvature representations with values in Lie algebras g. We prove that
certain homogeneous spaces of g produce MTs and show how to distinguish
these spaces. For a scalar translation-invariant evolution equation, this allows
us to classify all MTs in terms of homogeneous spaces of the Wahlquist–
Estabrook algebra of the equation. For other evolution systems this allows us
to construct some MTs. As an example, we study MTs over the KdV equation,
a fifth-order equation of Harry Dym type, and the coupled KdV–mKdV system
of Kersten and Krasilshchik.

PACS number: 02.30.Ik
Mathematics Subject Classification: 37K35, 53C30

1. Introduction

In this paper, we study (1 + 1)-dimensional evolution systems
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such that if v1, . . . , vk satisfy (1) then (3) satisfy (2). By analogy with the classical Miura
transformation connecting the KdV and mKdV equations, such transformations are called
Miura type transformations (MTs in short).
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It is well known that MTs play an important role in the theory of integrable evolution
systems. Chains of MTs generate Bäcklund transformations [13, 14].

If P i, Ri, Si do not depend on x and t, the MT is called translation invariant.
In the scalar case k = 1, the problem to find all pairs (2), (3) for a given system (1) was

solved efficiently in [16].
We study the opposite problem: for a given system (2), how do we find all pairs (1), (3)?

It seems that this problem was systematically studied only for translation-invariant MTs of
the linear equation ut = u3 [9] and the KdV equation [2, 3, 9]. In particular, a set of MTs
over the KdV equation was constructed using homogeneous spaces of certain Lie groups
[2] and loop groups [3]. These MTs do not exhaust all translation-invariant MTs over
the KdV equation, but, knowing all integrable equations of the form ut = u3 + f (u, u1, u2),
one can show that all other MTs can be obtained from these by the introduction of a
potential.

We relate MTs (3) with zero-curvature representations of (2) (ZCRs in short) dependent
on x, t, ui

j , j � p − 1. It turns out that such a ZCR with values in a Lie algebra g and a
certain representation of g by vector fields on a manifold W determine a MT. Among other
requirements, the image of g under the representation must span the tangent spaces of W , that
is, the manifold W is a homogeneous space of g.

This construction is not surprising if one recalls the theory of coverings of PDEs
[6, 12]. It is becoming clear [6] that each covering is determined by a g-valued ZCR and
a vector field representation of some Lie algebra g. Since MTs are a particular type of
coverings, it remains to determine which ZCRs and representations lead to MTs. However, in
order to be self-contained, we do not introduce the coverings terminology and work in local
coordinates.

If k = 1 and (2) is translation invariant, we prove that every MT arises in this way from
the ‘universal’ ZCR with values in the Wahlquist–Estabrook algebra of (2). This allows us
to reduce the classification of MTs to the classification of certain homogeneous spaces of the
Wahlquist–Estabrook algebra. As an example, we obtain that any (not necessarily translation-
invariant) MT over the KdV equation is of order not greater than 3. Also, we recover the Lie
groups of [2] as the Lie groups associated with some quotients of the Wahlquist–Estabrook
algebra and explain why the method of [2] does not give all translation-invariant MTs over the
KdV equation.

Another considered example is the equation ut = u
5
2 u5 [4, 11]. Using its Wahlquist–

Estabrook algebra computed in [4], we show that any MT over this equation is of order not
greater than 5 and construct a MT of order 3. The corresponding modified equation (39) may
be a new integrable equation.

For non-scalar systems, we obtain only a sufficient condition for a ZCR to define a MT.
As an example, we construct a MT over the coupled KdV–mKdV system of Kersten and
Krasilshchik [8]. This MT arises from the ZCR obtained in [7]. Again, the corresponding
modified system may be new.

There are also more general transformations of evolution equations, where one changes
not only dependent variables, but also the x variable (see, e.g., [5, 16, 15]). It remains an
interesting open question whether our Lie algebraic methods can be generalized for studying
these transformations.

The paper is organized as follows. In section 2, we study Lie algebras actions
of special type that will later turn out to be responsible for MTs. In sections 3 and
4 we describe MTs of scalar evolution equations and their relations with Wahlquist–
Estabrook algebras. Finally, in section 5 we study MTs of non-scalar evolution
systems.
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2. Actions of Lie algebras on manifolds

Recall that an action of a Lie algebra g on a manifold W is a homomorphism ρ: g → D(W)

to the Lie algebra D(W) of vector fields on W . The action is said to be transitive if for each
point a ∈ W the mapping

evρ,a: g → TaW, g �→ ρ(g)a,

is surjective. Two actions ρi : g → D(Wi), i = 1, 2, are said to be isomorphic if there is a
diffeomorphism ϕ: W1 → W2 such that ρ2 = ϕ∗ρ1.

Below our considerations are always local. The results are valid in both categories of
smooth and complex-analytic manifolds. Depending on the category considered, all functions
are supposed to be smooth or complex-analytic.

In what follows, we often consider a (possibly infinite) chain of subalgebras

g1 ⊂ g2 ⊂ g3 ⊂ · · · ⊂ g (4)

and an action ρ: g → D(W). It easy to see that there is a non-empty open subset Wc ⊂ W

such that

∀a, a′ ∈ Wc, ∀i dim evρ,a(g
i ) = dim evρ,a′(gi ),

dim evρ,a(g) = dim evρ,a′(g).
(5)

Moreover, if W is connected and ρ is analytic, one can choose Wc to be dense in W . Since
we study locally non-degenerate points only, below we always assume W = Wc.

Denote mi = dim evρ,a(g
i ) for a ∈ Wc. Due to inclusions (4) we have

m1 � m2 � m3 � · · · . (6)

Lemma 1. In the above-described situation, suppose that there is V ∈ D(W) such that for
each i the Lie algebra generated by the subspace ρ(gi ) + [ρ(gi ), V ] coincides with ρ(gi+1).
Set n = dim W . Suppose that

m1 � s, mn−s < n, ∃k mk = n. (7)

Then

mi = s + i − 1, i = 1, . . . , n − s + 1. (8)

Moreover, for each point z ∈ W on a neighbourhood of z there is a function w such that

dzw 	= 0, ρ(gn−s)(w) = 0,

and this function is unique up to a change w �→ g(w). Set

w̃i = V i−1(w), i = 1, . . . , n − s + 1.

One can find functions w̃n−s+2, . . . , w̃n such that w̃1, . . . , w̃n form a system of coordinates on
a neighbourhood of z.

Proof. For a set S of vector fields denote by 〈S〉 the submodule (over the algebra of functions)
of vector fields generated by S. By condition (5) and the Frobenius theorem, there are
coordinates w1, . . . , wn on a neighbourhood of z such that

∀i 〈ρ(gi )〉 =
〈

∂

∂w1
, . . . ,

∂

∂wmi

〉
. (9)

Denote module (9) by Mi . Suppose that mk = mk+1 for some k. Then [Mk, V ] ⊂ Mk and,
therefore, mp = mk for all p � k. Combining this property with (7) and (6), we obtain (8).
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Now we can take w = wn. Using the equalities

Mi + 〈[Mi, V ]〉 = Mi+1, i = 1, . . . , n − s,

by induction on i one proves

Mn−s−i+1(w̃
i) = 0,

∂w̃i

∂wn−i+1
	= 0, i = 1, . . . , n − s + 1,

where

M0 =
〈

∂

∂w1
, . . . ,

∂

∂ws−1

〉
.

Therefore, if we set w̃n−s+1+i = wi for i = 1, . . . , s − 1, the functions w̃1, . . . , w̃n will be
local coordinates on a neighbourhood of z. �

3. MTs from ZCRs of scalar evolution equations

Consider two scalar evolution equations

ut = P(x, t, u, u1, . . . , up), uk = ∂ku

∂xk
, (10)

vt = R(x, t, v, v1, . . . , vr ), vk = ∂kv

∂xk
, (11)

connected by a MT

u = S(x, t, v, v1, . . . , vn). (12)

The maximal integer n such that (12) depends non-trivially on vn is called the order of the
MT. A MT obtained from this one by a substitution v �→ g(v) is said to be equivalent to the
initial MT.

Introduce new variables

wi = ∂i−1v

∂xi−1
, i = 1, . . . , n, (13)

and rewrite systems (11), (12) as follows:

∂wi

∂x
= wi+1, i = 1, . . . , n − 1,

∂wn

∂x
= a(w1, . . . , wn, x, t, u), (14)

∂wi

∂t
= bi(w1, . . . , wn, x, t, u, . . . , up−1), i = 1, . . . , n,

where p is the order of (10). And, vice versa, it is easily seen that any consistent system of
this form with the non-degeneracy condition

∃w1
0, . . . , w

n
0 , x0, t0, u0

∂a

∂u

(
w1

0, . . . , w
n
0 , x0, t0, u0

) 	= 0 (15)

determines a MT of order n for (10) as follows:

• substitute (13) to (14),
• taking into account (15), from equation (14) express locally u = S(x, t, v, v1, . . . , vn),
• let D = ∑

i�0 vi+1∂/∂vi , then equation (11) is given by

vt = b1(v, v1, . . . , vn−1, x, t, S,D(S), . . . ,Dp−1(S)).
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Consider the total derivative operators

Dx = ∂

∂x
+

∑
j�0

uj+1
∂

∂uj

, Dt = ∂

∂t
+

∑
j�0

Dj
x(P (x, t, u, u1, . . . , up))

∂

∂uj

and more general overdetermined systems

∂wi

∂x
= ai(w1, . . . , wn, x, t, u), i = 1, . . . , n,

∂wi

∂t
= bi(w1, . . . , wn, x, t, u, . . . , up−1), i = 1, . . . , n,

(16)

consistent modulo (10). Clearly, an invertible change of variables

wi �→ f i(w1, . . . , wn) (17)

leads to a new system of form (16). Two systems related by such a change of variables are
said to be equivalent.

System (16) is completely determined by the vector fields

A =
n∑

i=1

ai(w1, . . . , wn, x, t, u)
∂

∂wi
,

B =
n∑

i=1

bi(w1, . . . , wn, x, t, u, . . . , up−1)
∂

∂wi
.

Consistency of (16) modulo (10) is equivalent to the equation

[Dx + A,Dt + B] = 0. (18)

Recall that two functions

M(x, t, u), N(x, t, u, . . . , up−1) (19)

with values in a Lie algebra g constitute a zero-curvature representation (ZCR in short) for
(10) if

[Dx + M,Dt + N ] = DxN − DtM + [M,N ] = 0. (20)

Then each action ρ: g → D(W) and a choice of local coordinates w1, . . . , wn in W determine
a consistent system of the form (16) with A = ρ(M) and B = ρ(N), since equation (18)
follows from (20). Clearly, different choices of coordinates in W or isomorphic actions
determine equivalent systems (16).

Definition 1. Suppose that a ZCR (19) is given. For each k ∈ N we define a subalgebra gk of
g by induction on k as follows:

• g0 = 0,
• g1 is the subalgebra generated by all elements

M(x, t, u) − M(x ′, t ′, u′) ∈ g,

where x, t, u, x ′, t ′, u′ run through all admissible (real or complex) values of the
corresponding variables.

• gk+1 is generated by the subspaces gk and [gk,M(x, t, u)].
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Remark 1. Note that due to the definition of g1 the space

gk + [gk,M(x, t, u)]

does not depend on the values of x, t, u.

Set also g̃ = ∪k�0g
k .

Theorem 1. Suppose that system (16) arises from an action ρ: g → D(W). Then the following
two statements are equivalent.

(1) There are z = (
w1

0, . . . , w
n
0

) ∈ W and an invertible transformation (17) on a
neighbourhood of z such that system (16) takes the form (14) with (15).

(2) There are z ∈ W and a neighbourhood W0 of z such that

dim evρ,z(g̃) = n, (21)

∀a ∈ W0 dim evρ,a(g
n−1) < n, (22)

∃x0, t0, u0
∂

∂u
(ρ(M))(z, x0, t0, u0) 	= 0. (23)

In this case on a neighbourhood of z there is a function w such that

dzw 	= 0, ρ(gn−1)(w) = 0, (24)

and it is unique up to a change w �→ g(w). The functions

w̃i = ρ(M(x, t, u))i−1(w), i = 1, . . . , n, (25)

do not depend on x, t, u and are local coordinates in which system (16) takes the desired
form (14), (15).

Proof. If system (16) is of the form (14), (15) then by the definition of gk we obtain
that on a neighbourhood of z the image of gk in each tangent space of W is spanned by
∂/∂wn−k+1, . . . , ∂/∂wn. This obviously implies (21) and (22), and (23) follows from (15).

Conversely, let (21), (22) and (23) hold. Then existence of w and the fact that w̃1, . . . , w̃n

are local coordinates follow from lemma 1 for s = 1 and V = ρ(M(x, t, u)). In particular,
the functions w̃1, . . . , w̃n−1 are invariant under ρ(g1). Combining this fact with the formula
w̃k+1 = ρ(M(x, t, u))(w̃k), by induction on k one gets that each function w̃k does not depend
on x, t, u.

It is easily seen that system (16) is of the form (14) in the coordinates w̃1, . . . , w̃n. Finally
condition (15) follows from (23). �

Remark 2. In the above theorem, to construct a MT it is sufficient to know the restriction
of ρ to some neighbourhood of z, and condition (21) implies that the action ρ|g̃ is transitive
on a neighbourhood of z.

Corollary 1. If gm = gm+1 for some m � 0 (equivalently, g̃ = gm) then actions of g cannot
produce MTs of order greater than m.

Proof. By theorem 1 and the above remark, a MT of order n is determined by a transitive
action ρ of g̃ such that ρ(gn−1) is not transitive. Since in our case g̃ = gk for any k � m, there
are no such actions for n > m. �

Remark 3. If M does not depend on x, t then (23) follows from (21) and (22). Indeed, from
the above proof in this case dim evρ,z(g

1) = 1, which implies that

∃u0
∂ρ(M)

∂u
(z, u0) 	= 0.
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4. Wahlquist–Estabrook algebras and MTs

4.1. General results

For a scalar translation-invariant equation

ut = P(u, u1, . . . , up) (26)

recall the definition of the Wahlquist–Estabrook algebra [18] from the point of view of [12].
Consider the equation

[Dx + A(u),Dt + B(u, u1, . . . , up−1)] = 0, (27)

where A,B are functions with values in a (not specified in advance) Lie algebra g. The
algebra g can also be the algebra of vector fields on a manifold W , then A and B are vector
fields on W dependent on u, . . . , up−1. Suppose that for any g equation (27) implies

A =
k1∑

i=1

fi(u)Fi, (28)

B =
k2∑

i=1

gi(u, u1, . . . , up−1)Gi, (29)

where fi, gi are some fixed scalar functions, which do not depend on g, and Fi,Gi are
elements of g. Moreover, suppose that functions (28) satisfy (27) if and only if some Lie
algebra relations hold between the elements F1, . . . , Fk1 ,G1, . . . ,Gk2 . In this case, the
quotient of the free Lie algebra generated by the letters Fi,Gj over these relations is called
the Wahlquist–Estabrook algebra of (26) and is denoted by we. Functions (28), (29) constitute
a ZCR with values in we such that any consistent translation-invariant system (16) arises from
this ZCR and some action of we.

The Wahlquist–Estabrook algebra exists for practically all known equations (see, e.g.,
[1, 12] and references therein).

By theorem 1 and remarks 2 and 3, we obtain the following result.

Theorem 2. Translation-invariant MTs of order n of (26) are in one-to-one correspondence
with actions ρ of we such that ρ(w̃e) is transitive and ρ(wen−1) is not transitive. Locally
isomorphic actions determine equivalent MTs.

It turns out that non-translation-invariant MTs can also be described in terms of actions
of we. By the construction of [10], with any system (14) we can associate the following
translation-invariant system

∂ŵ1

∂x
= ∂ŵ2

∂t
= 1,

∂ŵ2

∂x
= ∂ŵ1

∂t
= 0,

∂wi

∂x
= wi+1, i = 1, . . . , n − 1,

∂wn

∂x
= a(w1, . . . , wn, ŵ1, ŵ2, u),

∂wi

∂t
= bi(w1, . . . , wn, ŵ1, ŵ2, u, . . . , up−1), i = 1, . . . , n.

This system is consistent provided that the initial system (14) is consistent and equation (10)
(equation (26)) is translation invariant. It is determined by an action ρ of we on the manifold
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with coordinates ŵ1, ŵ2, w1, . . . , wn. If system (14) arises from a MT (12), (11) then we
have (15) which, similar to the proof of theorem 1, implies

dim evρ,a(w̃e) = n, dim evρ,a(wen−1) = n − 1.

This observation implies the following (compare with corollary 1).

Theorem 3. If for some n we have wen = w̃e then any (not necessarily translation-invariant)
MT over (26) is of order not greater than n.

4.2. MTs of the KdV equation

Consider the KdV equation

ut = u3 + u1u

in the complex-analytic category. According to [17], we have

we = H ⊕ sl2(C) ⊗C C[λ],

where H is the five-dimensional nilpotent Heisenberg algebra with the basis ri, i = −2,−1,

0, 1, 2, and the commutator table

[r−1, r1] = [r2, r−2] = r0, [ri, rj ] = 0 ∀i + j 	= 0

and the Lie bracket in sl2 ⊗ C[λ] is defined as follows:

[g1 ⊗ f1(λ), g2 ⊗ f2(λ)] = [g1, g2] ⊗ f1(λ)f2(λ), gi ∈ sl2, fi(λ) ∈ C[λ].

Below an element g ⊗ f (λ) of sl2 ⊗ C[λ] will be written simply as gf (λ).
The universal ZCR reads

A(u) = X1 + 1
3uX2 + 1

6u2X3, (30)

X1 = r1 − 1
2y + 1

2zλ, X2 = r−1 + z, X3 = r−2, (31)

where h, y, z is a basis of sl2 with the relations [h, y] = 2y, [h, z] = −2z, [y, z] = h. Here
the form of B(u, u1, u2) in (29) is not important for us.

From (30) and (31), using definition 3, one obtains

we1 = 〈X2, X3〉, we2 = 〈r−2, r−1, z, 2r0 + h〉,
we3 = wek = w̃e = 〈sl2 ⊗ C[λ], r−2, r−1, r0〉 ∀k � 3.

By theorem 3, any MT of the KdV equation is of order not greater than 3. For translation-
invariant MTs this was proved in [9].

Let us explain how our method of constructing MTs includes that of [2]. Set
g = sl2(C)⊗C C[λ]. We have the natural projection we → g that maps H to zero. Combining
it with the above ZCR, we obtain a ZCR with values in g whose x-part reads

M(u) = − 1
2y + 1

2zλ + 1
3uz.

For this ZCR we have

g1 = 〈z〉, g2 = 〈z, h〉, g3 = g̃ = g.

By theorem 2, each transitive action ρ of g = g̃ on a manifold of dimension n � 3 determines
a MT for the KdV equation, because the algebra ρ(gn−1) is of dimension �n − 1 and cannot
be transitive.

According to [6], for a transitive action ρ: g → D(W) the image ρ(g) is finite dimensional
and is of the form

sl2 ⊗ C[λ]/(f (λ)), f (λ) ∈ C[λ], (32)
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where (f (λ)) is the ideal of C[λ] generated by f (λ). Let

f (λ) = a

k∏
s=1

(λ − es)
ks , a, es ∈ C, a 	= 0, ei 	= ej∀i 	= j.

Then Lie algebra (32) is isomorphic to

k⊕
s=1

sl2 ⊗ C[λ]/(λks ). (33)

The Lie groups
∏

s SL2(C[λ]/(λks )) that appear in [2] have (33) as their Lie algebras. Thus,
construction of MTs arising from this ZCR is reduced to local description of homogeneous
spaces of dim �3 of these Lie groups. This description and the corresponding MTs are
presented in [2].

A translation-invariant MT over the KdV equation belongs to the list of MTs in [2] if and
only if for the corresponding action ρ of we we have ρ(H) = 0.

Example 1. Consider the following action of we on C

g → 0, ri �→ 0, i = −2, 0, 1, 2, r−1 �→ ∂

∂w
,

where w is a coordinate in C. The corresponding MT is

u = 3v1, vt = v3 + 3
2v2

1

and does not belong to the list of MTs in [2].

4.3. MTs of a Harry Dym type equation

Consider the equation [4, 11]

ut = u5/2u5 (34)

in the complex-analytic category. There are Bäcklund transformations connecting (34) with
the Sawada–Kotera and Kaup–Kupershmidt equations [4].

According to [4], the Wahlquist–Estabrook algebra of (34) is the direct sum C
2 ⊕g, where

C
2 is a commutative algebra with a basis C1, C2 and g is the ‘positive part’ of the twisted affine

algebra A
(2)
2 . In other words, the algebra g is isomorphic to a subalgebra of sl3(C) ⊗C C[λ]

generated by the two elements

X1 =
∥∥∥∥∥∥

0 0 0
λ 0 0
0 0 0

∥∥∥∥∥∥ , X2 =
∥∥∥∥∥∥

0 0 1
0 0 0
0 1 0

∥∥∥∥∥∥ (35)

satisfying the relations

(adX1)
2X2 = 0, (36)

(adX2)
5X1 = 0. (37)

The corresponding ZCR reads

A(u) = C1u
− 1

2 + X1u
− 3

2 + X2,

the form of B(u, u1, u2, u3, u4) can be found in [4] and is not important for our purposes.
The subalgebra wek, k � 1, is generated by the elements

C1, (adX2)
iX1, i = 0, . . . , k − 1.
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Combining this with relation (37), we obtain we5 = we6 = w̃e. By theorem 3, we obtain that
any MT over (34) is of order not greater than 5.

Let us construct a MT over (34). Consider the homomorphism we → sl3 that maps Ci

to zero and substitutes λ = 1 in (35). Combining the standard action of sl3 on C
3 with this

homomorphism, we obtain the following transitive action:

ρ: we → D(C3), ρ(Ci) = 0,

ρ(X1) = w2 ∂

∂w1
, ρ(X2) = w3 ∂

∂w2
+ w1 ∂

∂w3
.

According to theorem 1, to get a MT from this action we need to find a non-constant function
w on C

3 such that ρ(we2)(w) = 0. Since the algebra ρ(we2) is commutative and spanned by
the vector fields

ρ(X1) = w2 ∂

∂w1
, ρ([X2, X1]) = w3 ∂

∂w1
− w2 ∂

∂w3
,

we can take w = w2. By formula (25) for M(x, t, u) = A(u), we have w̃1 = w2, w̃2 = w3,

w̃3 = w1. Rewriting the vector field ρ(A(u)) in these coordinates, we obtain that the x-part
of the corresponding system (14) is

∂w̃1

∂x
= w̃2,

∂w̃2

∂x
= w̃3,

∂w̃3

∂x
= u− 3

2 w̃1. (38)

Applying the substitution (13) for wi = w̃i , from (38) we obtain the MT

u =
(

v

v3

) 2
3

.

The corresponding equation (11) can be obtained either by straightforward computation
or using the vector field ρ(B(u, u1, u2, u3, u4)) as described in section 3. The answer is

vt = −9vD2

((
v

v3

) 2
3

)
+

9

2
v1D

((
v

v3

) 2
3

)
− 3

2
v2

(
v

v3

) 2
3

, (39)

where D = ∑
i vi+1∂/∂vi .

5. MTs of non-scalar evolution systems

5.1. MTs from ZCRs

A MT (3) of non-scalar systems cannot always be written in some simple analogue of the
form (14), and, therefore, not all MTs of non-scalar systems can be described by our method.
In this section, we study the MTs that can be written in a form analogous to (14).

Consider an evolution system (2) and a system

∂wj

∂x
= wi+1, j = 1, . . . , n − s, (40)

∂wn−s+i

∂x
= Ai(w1, . . . , wn, x, t, u1, . . . , uk), i = 1, . . . , s, (41)

∂wl

∂t
= bi

(
w1, . . . , wn, x, t, u1, . . . , uk, u1

1, . . . , u
k
1, · · ·

)
, l = 1, . . . , n. (42)
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consistent modulo (2). By analogy with (15), suppose that the following condition holds:

∃w1
0, . . . , w

n
0 , x0, t0, u

1
0, . . . , u

k
0

rank

∥∥∥∥∂Ai

∂uj

∥∥∥∥ (
w1

0, . . . , w
n
0 , x0, t0, u

1
0, . . . , u

k
0

) = s.
(43)

In particular, from (43) we have s � k.
Then one gets a MT over (2) as follows. Taking into account (43), by the implicit function

theorem, there are 1 � j1 < · · · < js � k such that uj1 , . . . , ujs can locally be expressed
from (41) in terms of

x, t, w1, . . . , wn,
∂wn−s+i

∂x
, i = 1, . . . , s.

Let n1 < · · · < nk−s be such that {j1, . . . , js, n1, . . . , nk−s} = {1, . . . , k}. Substitute
everywhere

wj = v1
j−1,

∂wn−s+1

∂x
= v1

n−s , j = 1, . . . , n − s,

wn−s+j = vj ,
∂wn−s+j

∂x
= v

j

1 , j = 2, . . . , s,

unj = vs+j , j = 1, . . . , k − s.

Thus we expressed ui in terms of x, t, v
j

l , that is, we got (3). Finally, system (1) is obtained
from (42).

The total derivative operators are now

Dx = ∂

∂x
+

∑
i=1,...,k,

j�0

ui
j+1

∂

∂ui
j

, Dt = ∂

∂t
+

∑
i=1,...,k,

j�0

Dj
x(P

i(x, t, u, u1, . . . , up))
∂

∂ui
j

.

Similarly to (16) we consider systems

∂wi

∂x
= ai(w1, . . . , wn, x, t, u1, . . . , uk), i = 1, . . . , n,

∂wi

∂t
= bi

(
w1, . . . , wn, x, t, u1, . . . , uk, u1

1, . . . , u
k
1, . . .

)
, i = 1, . . . , n,

(44)

consistent modulo (2) with the same equivalence relation (17).
Two functions

M(x, t, u1, . . . , uk), N
(
x, t, u1, . . . , uk, u1

1, . . . , u
k
1, . . .

)
with values in a Lie algebra g constitute a ZCR for (2) if equation (20) holds. Each action
ρ: g → D(W) and a choice of local coordinates w1, . . . , wn in W determine a consistent
system of the form (44) as follows:

ρ(M) =
n∑

i=1

ai(w1, . . . , wn, x, t, u1, . . . , uk)
∂

∂wi
,

ρ(N) =
n∑

i=1

bi
(
w1, . . . , wn, x, t, u1, . . . , uk, u1

1, . . . , u
k
1, . . .

) ∂

∂wi
.
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Similar to definition 1, we define subalgebras gk of g by induction on k as follows:

• g0 = 0,
• g1 is the subalgebra generated by all elements

M(x, t, u1, . . . , uk) − M(x ′, t ′, (u1)′, . . . , (uk)′) ∈ g,

• gk+1 is generated by the subspaces gk and

[gk,M(x, t, u1, . . . , uk)].

Set also g̃ = ∪k�0g
k .

Theorem 4. Suppose that system (44) arises from an action ρ: g → D(W) and there are
x0, t0, u

1
0, . . . , u

k
0, z ∈ W and a neighbourhood W0 of z such that

dim evρ,z(g̃) = n, ∀a ∈ W0 dim evρ,a(g
n−s) < n,

where s is the dimension of the subspace〈
∂ρ(M)

∂ui

(
z, x0, t0, u

1
0, . . . , u

k
0

)∣∣∣∣ i = 1, . . . , k

〉
⊂ TzW. (45)

Then on a neighbourhood of z there is a function w such that

dzw 	= 0, ρ(gn−s)(w) = 0,

and it is unique up to a change w �→ g(w). The functions

w̃i = ρ(M(x, t, u1, . . . , uk))i−1(w), i = 1, . . . , n − s + 1,

do not depend on x, t, ui . One can find functions w̃n−s+2, . . . , w̃n such that w̃1, . . . , w̃n form
a system of coordinates on a neighbourhood of z. The initial system (16) takes the form
(40), (41), (42), (43) in these coordinates.

Proof. Similar to theorem 1, this follows from lemma 1 for V = ρ(M(x, t, u1, . . . , uk)).
Condition m1 = dim evρ,z(g

1) � s holds because the space evρ,z(g
1) includes subspace (45).

�

5.2. MTs of the Kersten–Krasilshchik system

The following system was introduced in [8] and proved to be integrable

u1
t = −u1

3 + 6u1u1
1 − 3u2u2

3 − 3u2
1u

2
2 + 3u1

1(u
2)2 + 6u1u2u2

1,

u2
t = −u2

3 + 3(u2)2u2
1 + 3u1u2

1 + 3u1
1u

2.
(46)

Denote by Eij , i, j = 1, 2, 3, the (3 × 3)-matrix with (i, j)-entry equal to 1 and other
entries equal to 0. Let g be the five-dimensional Lie subalgebra of sl3(C) spanned by the
elements

e = E12, n1 = E13, f = E21, n2 = E23, h = E11 − E22.

An sl3-valued ZCR dependent on a parameter λ was constructed for (46) in [7]. For λ = 0
one obtains the following ZCR:

M = ((u2)2 − u1)e − f − u2n1

and

N = (
u1

2 + u2u2
2 +

(
u2

1

)2 − 2(u1)2 + (u2)4 + (u2)2u1)e

− (
u1

1 + u2u2
1

)
h − ((u2)2 + 2u1)f +

(
u2

2 − (u2)3 − 2u1u2
)
n1 + u2

1n2.
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Let us construct MTs for (46) from this ZCR using theorem 4. We have

g1 = 〈e, n1〉, g2 = 〈h, e, n1, n2〉, g3 = g̃ = g. (47)

Every subalgebra h ⊂ g of codimension 3 such that

g1 ∩ h = 0 (48)

determines a MT as follows. Consider Lie groups H ⊂ G corresponding to the Lie algebras
h ⊂ g and set W = G/H, z = H ∈ G/H . We have the natural transitive action of
ρ: g → D(W). From (47) and (48) we obtain that the dimension of space (45) is equal to 2.
Since dim g1 = 2 and dim W = 3, the algebra ρ(g1) is not transitive on W . Therefore, all
conditions of theorem 4 are satisfied, and ρ determines a MT with n = 3, s = 2.

For example, set h = 〈n2, f − n1〉. The corresponding action in local coordinates reads

e �→ ∂

∂w2
, n1 �→ ∂

∂w3
, n2 �→ w2 ∂

∂w3
,

f �→ w2 ∂

∂w1
− (w2)2 ∂

∂w2
+

(
e−3w1 − w2w3

) ∂

∂w3
,

h �→ ∂

∂w1
− 2w2 ∂

∂w2
− w3 ∂

∂w3
.

Indeed, the isotropy subalgebra of the point z = (0, 0, 0) is equal to h. The MT reads

u1 = v1
2 +

(
v1

1

)2
+

(
v2

1 + v1
1v

2 − e−3v1)2
, u2 = v2

1 + v1
1v

2 − e−3v1
.

The corresponding system (1) is cumbersome and can be obtained from ρ(N) as described in
subsection 5.1.
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